Light Induced Degradation (LID) & Light- and Elevated Temperature-Induced Degradation (LETID) challenges for PERC modules

### What are LID & LETID and what do they mean for your financials?

### Insights from



Tara Doyle



Dr. Alison Ciesla





Marcello Passaro





kiwa



### Table of Contents

Executive Summary

Technical Dive In

### **Financial Impact**

Case Study

Mitigation Measures

Slide 3

Slide 5 - 11

Slide 12

Slide 13

Slide 14

### **Executive Summary**

#### **Risk Profile**



**Frequency & Impact:** Without effective treatment PERCmodules can experience LID rates up to 3% in the firstmonths and up to 6% LETID in the first few years.



**Root cause:** Degradation rates depend on temperature, irradiance and manufacturer process.



**Concern:** LID and LETID are key concerns for solar assets that are often overlooked, impacting yield and in turn revenue over time.

#### **Mitigation Measures**

See slide 14 for more



IEC61215/61730 Certification

kiwa



Product Qualification Program



#### Batch Testing

Every 1% degradation equates to 10% of revenue loss

Minimizing degradation due to LETID & LID up to 1%

### Kiwa your partner in progress in safeguarding your PV revenues

Every 1% of LID and/or LETID degradation reduces revenues by up to 10% – but you can prevent it.

Email us at solar@kiwa.com learn more about the data shared here.



### LID & LETID in a nutshell



Time (years)

#### LID

LID caused by boron-oxygen defects occurs within weeks and recovers within months.

#### LETID

LETID exact defect unknown but likely hydrogen related occurs over many years and then recovers over decades.

#### What are LID and LETID?

For untreated cells, Light Induced Degradation (LID) usually occurs when PV modules are first exposed to light and reduces performance up to 3%. Light and Elevated Temperature Induced Degradation (LETID) occurs over a longer period and can reduce performance by up to 3% and in worst cases up to 6%.



### Typical timeline of LID/LETID



Typically LID & LETID have a period of degradation and then regeneration Degradation rates can vary greatly depending on temperature, irradiance, manufacturing process and cell architecture.

Which technology suffers the most LID & LETID?



ki

Mostly effects Si mono and multi crystalline PERC modules.

Though cells with a PERC architecture are impacted, other architectures (n type, TOPCON, IBC, HJT) also show some varying degree of impact by LID. This paper focuses solely on PERC LID & LETID.

## What are the main known root causes for PERC LID & LETID?



#### Boron Oxygen (BO) Complex formation



kiwa

### 2 Hydrog

#### **Hydrogen Mobilisation**

Hydrogen trapped during cell processing interacts with complexes creating weak bonds, which under illumination & temperature "break" leading to degradation



#### **Passivation Degradation**

Passivation layers degrade under UV exposure outdoors, further accelerated by higher temperatures which leads to degradation

### Role of complexes in relative power loss (LID)



kiwa

Simplified example of the role of complexes in reducing the relative power of a module in LID

The cyclic effect of all degradation mechanisms leading to LID/LETID



kiv

### Thermal processes without illumination can reactivate boron, oxygen and hydrogen creating new cycles of degradation, particularly when exposed to temperature and illumination.





https://www.researchgate.net/publication/326367944\_Hydrogen-induced\_degradation

kiwa

### Illumination & temperature (climate) dependance of LID & LETID



LID and LETID rates depend on climate as well as cell technology/architecture.



Lab Testing

Field & Simulated Data



https://www.nrel.gov/docs/fy21osti/78629.pdf

kiwa

LID/LETID may result in extensive losses

**No** mitigation measures means lower CAPEX costs, but higher than anticipated OPEX costs & lower yields 10% loss in revenue per 1% of LID and/or LETID degradation

Up to 1.2 EUR/MWh(AC) reduction in LCOE possible if implementing mitigation measures at the CAPEX costof 1.2 EUR; ultimately reducing yearly losses of up to 3 EUR/kWp/year.

### Case Study

In PVEL's 2021 PV Module Reliability Scorecard the majority of modules tested within an 18 month period were Top Performers with a combined power degradation of less than 2%.

This is encouraging, although testing participants are a self-selecting group and it's unknown if this represents a trend for all modules.



kin

https://modulescorecard.pvel.com/lidletid/



### Mitigate these risks by:

| Mitigation Strategies ba | ased on 0,1 to | 100MWDC Project | Size & Testing Budget |
|--------------------------|----------------|-----------------|-----------------------|
|--------------------------|----------------|-----------------|-----------------------|

| IEC61215 &<br>IEC61730<br>Certificates            |
|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| PVEL Product<br>Qualification<br>Program Insights |
|                                                   | Contract<br>Optimization                          | Contract<br>Optimization                          | Contract<br>Optimization                          | Contract<br>Optimization                          | Contract<br>Optimization                          | Contract<br>Optimization                          |
|                                                   |                                                   | Technology &<br>Design Review                     |
|                                                   |                                                   |                                                   | Batch Testing                                     | Batch Testing                                     | Batch Testing                                     | Batch Testing                                     |
|                                                   |                                                   |                                                   |                                                   | Factory Audit                                     | Factory Audit                                     | Factory Audit                                     |
|                                                   |                                                   |                                                   |                                                   |                                                   | Production<br>Monitoring                          | Production<br>Monitoring                          |
| Site Testing                                      |

#### Each additional phase reduces the project risk from medium - high to low

kiwa



Added value of mitigating risks



Typical loss for a 0,10 EUR/kWh project without mitigation strategies equates to a total loss of 5.4 EUR/kWp/year. Implementing previously stated risk strategies reduces those total losses to 2.2 EUR/kWp/year.





http://www.solarbankability.org/results.html#c129



# Find out how Kiwa can be your partner in progress for safeguarding long term solar investments

