Bright solar PV future

Growing global installed capacity

ki

Dropping Levelized Cost of Electricity

To profit you must mitigate technical risks

Variations depending on climate, quality of engineering, component selection, workmanship, scope & level of maintenance, age of system

ki

As it may result in extensive losses

No mitigation measures means more downtime > 2%

ki

*Based on a high PPA (Power Purchase Agreement) of 0.10 EUR/kWh

Less cash flow & less IRR (Internal Rate of Return)

Case Study

"20% of US solar fleet underperformed;increasing likelihood of loan default by70% at least once in a 7 year period"*

*Due to optimistic irradiance assumptions, no real time monitoring, underestimated O&M costs, misaligned scopes of contracts, component failures & weather adjustments bias

Mitigate these risks by:

Pre-shipment inspections of components

Added value of mitigating risks

Up to **3.2** EUR/kWp/year **SAVED**

solar@kiwa.com

ki

Sources:

Solar Bankability, Miniziming Technical Risks in Photovoltaic Projects, 2017 Sandia, PV System Component Fault & Failure Compilation and Analysis, 2018 NREL, Energy impact of failure of PV components, 2016 kWh Analytics, Solar Risk Assessment, 2020 IEA, Renewables, 2019 IRENA, Future of Solar, 2019 Kiwa field & data experience & analytics

#01-2021